208 research outputs found

    Research in satellite-aided crop inventory and monitoring

    Get PDF
    Automated information extraction procedures for analysis of multitemporal LANDSAT data in non-U.S. crop inventory and monitoring are reviewed. Experiments to develope and evaluate crop area estimation technologies for spring small grains, summer crops, corn, and soybeans are discussed

    The 1980 US/Canada wheat and barley exploratory experiment. Volume 2: Addenda

    Get PDF
    Three study areas supporting the U.S./Canada Wheat and Barley Exploratory Experiment are discussed including an evaluation of the experiment shakedown test analyst labeling results, an evaluation of the crop proportion estimate procedure 1A component, and the evaluation of spring wheat and barley crop calendar models for the 1979 crop year

    Crop identification technology assessment for remote sensing (CITARS). Volume 10: Interpretation of results

    Get PDF
    The CITARS was an experiment designed to quantitatively evaluate crop identification performance for corn and soybeans in various environments using a well-defined set of automatic data processing (ADP) techniques. Each technique was applied to data acquired to recognize and estimate proportions of corn and soybeans. The CITARS documentation summarizes, interprets, and discusses the crop identification performances obtained using (1) different ADP procedures; (2) a linear versus a quadratic classifier; (3) prior probability information derived from historic data; (4) local versus nonlocal recognition training statistics and the associated use of preprocessing; (5) multitemporal data; (6) classification bias and mixed pixels in proportion estimation; and (7) data with differnt site characteristics, including crop, soil, atmospheric effects, and stages of crop maturity

    Results from the Crop Identification Technology Assessment for Remote Sensing (CITARS) project

    Get PDF
    The author has identified the following significant results. It was found that several factors had a significant effect on crop identification performance: (1) crop maturity and site characteristics, (2) which of several different single date automatic data processing procedures was used for local recognition, (3) nonlocal recognition, both with and without preprocessing for the extension of recognition signatures, and (4) use of multidate data. It also was found that classification accuracy for field center pixels was not a reliable indicator of proportion estimation performance for whole areas, that bias was present in proportion estimates, and that training data and procedures strongly influenced crop identification performance

    Results from the Crop Identification Technology Assessment for Remote Sensing

    Get PDF
    CITARS was an experiment designed to quantitatively evaluate crop identification performance for corn and soybeans in various environments using a well-defined set of automatic data techniques. These techniques differed mainly by the procedure used to obtain signatures from training data (e.g., clustering) and by the method of classification employed (e.g., linear or quadratic decision boundaries and equal or unequal class weights). Each technique was applied to LANDSAT-1 data acquired over six Indiana and Illinois test sites throughout the growing season in an attempt to recognize and estimate proportions of corn and soybeans using both local and non-local (i.e. extended) training statistics. As a result of these analyses the significance of factors which contribute to classification performance was determined. In this paper the results of (1) the differences indifferent ADP procedures; (2) the linear vs. quadratic classifier; (3) the use in classification Of prior probability information derived from historic data: (4) differences in local and non-local recognition and the associated use of preprocessing: (5) the use of multitemporal data: (6) the effects Of classification bias and mixed pixels in proportion estimation: (7) the effects of site characteristics including crop, soil, and atmospheric effects: and (8) the effects of crop maturity are presented and discussed

    Forward and Reverse Genetics of Rapid-Cycling \u3cem\u3eBrassica oleracea\u3c/em\u3e

    Get PDF
    Seeds of rapid-cycling Brassica oleracea were mutagenized with the chemical mutagen, ethylmethane sulfonate. The reverse genetics technique, TILLING, was used on a sample population of 1,000 plants, to determine the mutation profile. The spectrum and frequency of mutations induced by ethylmethane sulfonate was similar to that seen in other diploid species such as Arabidopsis thaliana. These data indicate that the mutagenesis was effective and demonstrate that TILLING represents an efficient reverse genetic technique in B. oleracea that will become more valuable as increasing genomic sequence data become available for this species. The extensive duplication in the B. oleracea genome is believed to result in the genetic redundancy that has been important for the evolution of morphological diversity seen in today\u27s B. oleracea crops (broccoli, Brussels sprouts, cauliflower, cabbage, kale and kohlrabi). However, our forward genetic screens identified 120 mutants in which some aspect of development was affected. Some of these lines have been characterized genetically and in the majority of these, the mutant trait segregates as a recessive allele affecting a single locus. One dominant mutation (curly leaves) and one semi-dominant mutation (dwarf-like) were also identified. Allelism tests of two groups of mutants (glossy and dwarf) revealed that for some loci, multiple independent alleles have been identified. These data indicate that, despite genetic redundancy, mutation of many individual loci in B. oleracea results in distinct phenotypes

    Attenuation of Frontostriatal Connectivity During Reward Processing Predicts Response to Psychotherapy in Major Depressive Disorder

    Get PDF
    There are few reliable predictors of response to antidepressant treatments. In the present investigation, we examined pretreatment functional brain connectivity during reward processing as a potential predictor of response to Behavioral Activation Treatment for Depression (BATD), a validated psychotherapy that promotes engagement with rewarding stimuli and reduces avoidance behaviors. Thirty-three outpatients with major depressive disorder (MDD) and 20 matched controls completed two runs of the monetary incentive delay task during functional magnetic resonance imaging after which participants with MDD received up to 15 sessions of BATD. Seed-based generalized psychophysiological interaction analyses focused on task-based connectivity across task runs, as well as the attenuation of connectivity from the first to the second run of the task. The average change in Beck Depression Inventory-II scores due to treatment was 10.54 points, a clinically meaningful response. Groups differed in seed-based functional connectivity among multiple frontostriatal regions. Hierarchical linear modeling revealed that improved treatment response to BATD was predicted by greater connectivity between the left putamen and paracingulate gyrus during reward anticipation. In addition, MDD participants with greater attenuation of connectivity between several frontostriatal seeds, and midline subcallosal cortex and left paracingulate gyrus demonstrated improved response to BATD. These findings indicate that pretreatment frontostriatal functional connectivity during reward processing is predictive of response to a psychotherapy modality that promotes improving approach-related behaviors in MDD. Furthermore, connectivity attenuation among reward-processing regions may be a particularly powerful endophenotypic predictor of response to BATD in MDD

    Sustained anterior cingulate cortex activation during reward processing predicts response to psychotherapy in major depressive disorder

    Get PDF
    The purpose of the present investigation was to evaluate whether pre-treatment neural activation in response to rewards is a predictor of clinical response to Behavioral Activation Therapy for Depression (BATD), an empirically validated psychotherapy that decreases depressive symptoms by increasing engagement with rewarding stimuli and reducing avoidance behaviors

    ATLAS silicon module assembly and qualification tests at IFIC Valencia

    Full text link
    ATLAS experiment, designed to probe the interactions of particles emerging out of proton proton collisions at energies of up to 14 TeV, will assume operation at the Large Hadron Collider (LHC) at CERN in 2007. This paper discusses the assembly and the quality control tests of forward detector modules for the ATLAS silicon microstrip detector assembled at the Instituto de Fisica Corpuscular (IFIC) in Valencia. The construction and testing procedures are outlined and the laboratory equipment is briefly described. Emphasis is given on the module quality achieved in terms of mechanical and electrical stability.Comment: 23 pages, 38 EPS figures, uses JINST LaTeX clas
    corecore